written in the Bloch form

$$
\begin{equation*}
\psi_{k}(\vec{r})=e^{i \vec{k} \cdot \vec{r}} u_{k}(\vec{r}) \tag{IV25}
\end{equation*}
$$

We write the matrix elements as

$$
U_{\mathrm{kk}^{\prime}}=-\sum_{\dot{l}} \overrightarrow{\mathrm{R}}(\vec{l}) \cdot \int_{\text {crystal }} \psi_{\mathrm{k}^{\prime}}^{*}(\vec{r}) \nabla V \psi_{\mathrm{k}}(\overrightarrow{\mathrm{r}}) \overrightarrow{\mathrm{dr}}
$$

and by changing the origin to the lattice point at $\vec{l}$ so that $\vec{r}^{\prime}=\vec{r}-\vec{l}$

$$
\begin{equation*}
U_{k^{\prime} k^{\prime}}=-\sum_{\vec{l}} \vec{R}(\vec{l}) e^{-i\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \cdot \vec{l}} \int_{\mathrm{k}^{\prime}} *\left(\vec{r}^{\prime}\right) \nabla v \psi_{k}\left(\overrightarrow{r^{\prime}}\right) \overrightarrow{d r^{\prime}} \tag{IV26a}
\end{equation*}
$$

Bailyn [11] has computed the integral in Eq. (IV-26a) in a calculation that uses the Hartree-Fock equation for the electrons. We follow his notation and express the integral as

$$
\begin{equation*}
\int \psi_{\mathrm{K}^{\prime}}{ }^{*}(\overrightarrow{\mathrm{r}}) \nabla \mathrm{V}(\overrightarrow{\mathrm{r}}) \psi_{\mathrm{K}}(\overrightarrow{\mathrm{r}}) \overrightarrow{\mathrm{dr}}=\widehat{\mathrm{s}}[\mathrm{JS}] \tag{IV-27}
\end{equation*}
$$

where $\hat{s}=\frac{\vec{k}-\overrightarrow{k^{\prime}}}{\left|\vec{k}-\overrightarrow{k^{\prime}}\right|}$.
We are ignoring normalization factors. J denotes the contribution to the matrix element of the ion core alone and $S$ denotes a shielding factor which includes the effect of the electron cloud about the core and the exchange nole.

If we now express the displacement $\vec{R}(\vec{\ell})$ in terms of lattice waves, we have

$$
\begin{equation*}
\vec{R}(\vec{l})=\sum_{p} \sum_{\vec{q}} \widehat{e}_{\vec{q}, p} a \underset{q}{q}, p-e^{-i \vec{q} \cdot \vec{l}} \tag{IV-28}
\end{equation*}
$$

where $\hat{\mathrm{e}} \underset{\mathrm{q}, \mathrm{p}}{ }$ is a unit vector which depends on $\overrightarrow{\mathrm{q}}$, the lattice vibration or phonon wave number and the polarization $p, a \underset{q}{ }$ is the amplitude of the vibration.

Then

$$
U_{k k^{\prime}}=-\sum_{\vec{q}} \sum_{\vec{l}} e^{-i\left(\vec{k}-\overrightarrow{k^{\prime}}+\vec{q}\right) \cdot \vec{l}_{a \rightarrow}} \sum_{\mathrm{q}, \mathrm{p}} \sum_{\mathrm{p}} \hat{e}_{\mathrm{q}, \mathrm{p}} \cdot \hat{\mathrm{~s}}[\mathrm{JS}(\theta)] \cdot(I V-29)
$$

the sum over $\vec{l}$ yields the condition

$$
\vec{k}-\vec{k}^{\prime}+\vec{q}=\left\{\begin{array}{l}
\vec{K}, \text { a reciprocal lattice vector }  \tag{IV-30}\\
0
\end{array}\right.
$$

and a value N , the number of ions.
Since $\vec{k}$ and $\overrightarrow{k^{\prime}}$ are specified and we have restricted $\vec{q}$ to lie in the 1st Brillouin zone, $\vec{q}$ is specified and the sum over $\vec{q}$ reduces to a single term.

The value of $\mathrm{a} \overrightarrow{\mathrm{q}}$ comes from the matrix element for a phonon annihilation (creation) operator and is given by [12]

$$
\begin{aligned}
& a_{\vec{q}, p}=\cdot\left[\frac{\hbar}{2 N M \nu \vec{q}, p}\right]^{1 / 2} \times(\bar{n} \underset{\mathrm{q}, \mathrm{p}}{ })^{1 / 2} \quad \text { annihilation of phonon } \\
& \text { or } \\
& (\overline{\mathrm{n}} \underset{\mathrm{q}, \mathrm{p}}{ }+1)^{1 / 2} \quad \text { creation of phonon } \\
& \text { (I) } M \text { is the mass of the ion and } v \underset{\mathrm{q}, \mathrm{p}}{ } \text { the frequency of the phonon } \vec{q} \text {. }
\end{aligned}
$$

$\overline{\mathrm{n}} \overrightarrow{\mathrm{q}}$ the equilibrium occupation number is given by the Bose-Einstein factor;

$$
\begin{equation*}
\bar{n}_{\vec{q}}=\frac{1}{e^{h v \vec{q}^{\prime / k T}}-1} \tag{IV-32}
\end{equation*}
$$

For the high temperature limit $\mathrm{h} \nu / \mathrm{kT} \ll 1$ and $\mathrm{a}_{-\mathrm{q}}$ becomes

$$
\begin{equation*}
\underset{\mathrm{q}}{\mathrm{a}}=\left[\frac{\hbar}{2 \mathrm{NM}_{\mathrm{q}} \stackrel{\rightharpoonup}{\mathrm{q}}} \frac{\mathrm{kT}}{\mathrm{~h} \mathrm{\nu} \overrightarrow{\mathrm{q}}}\right]^{1 / 2} \quad \underset{\text { Limit }}{\text { High Temperature }} \tag{IV-33}
\end{equation*}
$$

We write this as

$$
\begin{equation*}
\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{q}, \mathrm{p}}=\frac{\mathrm{B}^{1 / 2}}{\mathrm{~N} \omega_{\mathrm{q}, \mathrm{p}}} \tag{IV-34}
\end{equation*}
$$

